Face detection using coarse-to-fine support vector classifiers

نویسندگان

  • Hichem Sahbi
  • Donald Geman
  • Nozha Boujemaa
چکیده

We describe a new face detection algorithm based on a hierarchy of support vector classifiers (SVMs) designed for efficient computation. The hierarchy serves as a platform for a coarse-tofine search for faces: most of the image is quickly rejected as ”background” and the processing naturally concentrates on regions containing faces and face-like structures. The hierarchy is tree-structured: In proceeding from the root to the leaves, the SVMs gradually increase in complexity (measured by the number of support vectors) and discrimination (measured by the false alarm rate), but decrease in the level of invariance. Reduced complexity is achieved by clustering support vectors and shifting the decision boundary in order to satisfy a ”conservation hypothesis” that preserves positive responses from the original set of support vectors. The computation is organized as a depth-first search and cancel strategy. The gain in efficiency is enormous.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast hierarchical face detection

We describe a new face detection algorithm based on a hierarchy of support vector classifiers (SVMs). Some preprocessing steps reduce the number of candidates, which should be verify by SVMs. Hierarchical SVMs are designed for coarse-to-fine search of human face. In the SVMs, eye classifiers with different complexity (measured by the number of support vector) are used to find the eye candidates...

متن کامل

A Multi-Stage Approach to Fast Face Detection

A multi-stage approach — which is fast, robust and easy to train — for a face-detection system is proposed. Motivated by the work of Viola and Jones [1], this approach uses a cascade of classifiers to yield a coarse-to-fine strategy to reduce significantly detection time while maintaining a high detection rate. However, it is distinguished from previous work by two features. First, a new stage ...

متن کامل

Robust Multi-view Face Detection Using Error Correcting Output Codes

This paper presents a novel method to solve multi-view face detection problem by Error Correcting Output Codes (ECOC). The motivation is that face patterns can be divided into separated classes across views, and ECOC multi-class method can improve the robustness of multi-view face detection compared with the view-based methods because of its inherent error-tolerant ability. One key issue with E...

متن کامل

A Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning

In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...

متن کامل

Using Nuances of Emotion to Identify Personality

Past work on personality detection has shown that frequency of lexical categories such as first person pronouns, past tense verbs, and sentiment words have significant correlations with personality traits. In this paper, for the first time, we show that fine affect (emotion) categories such as that of excitement, guilt, yearning, and admiration are significant indicators of personality. Additio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002